Mining candidate causal relationships in movement patterns
نویسندگان
چکیده
In many applications, the environmental context for and drivers of movement patterns are just as important as the patterns themselves. This article adapts standard data mining techniques, combined with a foundational ontology of causation, with the objective of helping domain experts identify candidate causal relationships between movement patterns and their environmental context. In addition to data about movement and its dynamic environmental context, our approach requires as input definitions of the states and events of interest. The technique outputs causal and causal-like relationships of potential interest, along with associated measures of support and confidence. As a validation of our approach, the analysis is applied to real data about fish movement in the Murray River in Australia. The results demonstrate that the technique is capable of identifying statistically significant patterns of movement indicative of causal and causal-like relationships.
منابع مشابه
Identifying candidate causal relationships in fish movement patterns
Although there has been considerable research on the analysis of the second order effects of movement (i.e., the analysis of the patterns, similarities, or characteristics of trajectories), Gschwend and Laube (2012) argue that not enough research has addressed the analysis of first-order effects (i.e., the impact of the environmental context in which movement takes place). In this paper we outl...
متن کاملUnderstanding Temporal Human Mobility Patterns in a City by Mobile Cellular Data Mining, Case Study: Tehran City
Recent studies have shown that urban complex behaviors like human mobility should be examined by newer and smarter methods. The ubiquitous use of mobile phones and other smart communication devices helps us use a bigger amount of data that can be browsed by the hours of the day, the days of the week, geographic area, meteorological conditions, and so on. In this article, mobile cellular data mi...
متن کاملA Comparison of Association Rule Discovery and Bayesian Network Causal Inference Algorithms to Discover Relationships in Discrete Data
Association rules discovered through attribute-oriented induction are commonly used in data mining tools to express relationships between variables. However, causal inference algorithms discover more concise relationships between variables, namely, relations of direct cause. These algorithms produce regressive structured equation models for continuous linear data and Bayes networks for discrete...
متن کاملDiscovering Patterns in Multiple Time-series
In the past there has been some methodologies for solving time-series data mining. Those previous works of multiple sequences matching mechanisms are complicated and lack of comprehensive application domains, especially in multiple streaming data. Here we deal with these restrictions by introducing a novel methodology for finding multiple time-series patterns. The model is evaluated the noise b...
متن کاملExploring causal influences
Recent data mining techniques exploit patterns of statistical independence in multivariate data to make conjectures about cause/effect relationships. These relationships can be used to construct causal graphs, which are sometimes represented by weighted node-link diagrams, with nodes representing variables and combinations of weighted links and/or nodes showing the strength of causal relationsh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal of Geographical Information Science
دوره 28 شماره
صفحات -
تاریخ انتشار 2014